Performance Optimizations for an Automatic Target Generation Process in Hyperspectral Analysis

نویسندگان

  • Fernando Sierra-Pajuelo
  • Abel Paz
  • Antonio J. Plaza
چکیده

Hyperspectral sensors acquire images with hundreds of spectral channels. These images have a lot of information in both spectral and spatial domain, and with this kind of information different research studies can be accomplished. In this work, we present several optimizations for hyperspectral image processing algorithms intended to detect targets in hyperspectral images. The hyperspectral image selected for our study was collected by the NASAs Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the World Trade Center (WTC) in New York, five days after September 11th attack. The algorithm used in our experiments is the automated target generation process (ATGP) and our optimizations comprise parallel versions of the algorithm developed using open multi-processing (OpenMP) and message passing interface (MPI). Our experiments indicate that the ATGP can be successfully implemented in parallel in multicore and cluster computing architectures, including Intel Xeon Phi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Spectral Target Recognition in Hyperspectral Imagery

Automatic target recognition (ATR) in hyperspectral imagery is a challenging problem due to recent advances of remote sensing instruments which have significantly improved sensor’s spectral resolution. As a result, small and subtle targets can be uncovered and extracted from image scenes, which may not be identified by prior knowledge. In particular, when target size is smaller than pixel resol...

متن کامل

Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters

          Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Automatic Workflow Generation and Modification by Enterprise Ontologies and Documents

This article presents a novel method and development paradigm that proposes a general template for an enterprise information structure and allows for the automatic generation and modification of enterprise workflows. This dynamically integrated workflow development approach utilises a conceptual ontology of domain processes and tasks, enterprise charts, and enterprise entities. It also suggests...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Scalable Computing: Practice and Experience

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016